Interval Forecasting Method of Aggregate Output for Multiple Wind Farms Using LSTM Networks and Time-Varying Regular Vine Copulas

Author:

Wang Yanwen1,Sun Yanying1ORCID,Li Yalong1,Feng Chen2,Chen Peng1

Affiliation:

1. School of Mechanical Electronic & Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China

2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Interval forecasting has become a research hotspot in recent years because it provides richer uncertainty information on wind power output than spot forecasting. However, compared with studies on single wind farms, fewer studies exist for multiple wind farms. To determine the aggregate output of multiple wind farms, this paper proposes an interval forecasting method based on long short-term memory (LSTM) networks and copula theory. The method uses LSTM networks for spot forecasting firstly and then uses the forecasting error data generated by LSTM networks to model the conditional joint probability distribution of the forecasting errors for multiple wind farms through the time-varying regular vine copula (TVRVC) model, so as to obtain the probability interval of aggregate output for multiple wind farms under different confidence levels. The proposed method is applied to three adjacent wind farms in Northwest China and the results show that the forecasting intervals generated by the proposed method have high reliability with narrow widths. Moreover, comparing the proposed method with other four methods, the results show that the proposed method has better forecasting performance due to the consideration of the time-varying correlations among multiple wind farms and the use of a spot forecasting model with smaller errors.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3