Harnessing Lipid Polymer Hybrid Nanoparticles for Enhanced Oral Bioavailability of Thymoquinone: In Vitro and In Vivo Assessments

Author:

Imam Syed SarimORCID,Gilani Sadaf JamalORCID,Bin Jumah May Nasser,Rizwanullah Md.ORCID,Zafar AmeeduzzafarORCID,Ahmed Mohammed Muqtader,Alshehri Sultan

Abstract

The clinical application of phytochemicals such as thymoquinone (THQ) is restricted due to their limited aqueous solubility and oral bioavailability. Developing mucoadhesive nanocarriers to deliver these natural compounds might provide new hope to enhance their oral bioavailability. Herein, this investigation aimed to develop THQ-loaded lipid-polymer hybrid nanoparticles (THQ-LPHNPs) based on natural polymer chitosan. THQ-LPHNPs were fabricated by the nanoprecipitation technique and optimized by the 3-factor 3-level Box–Behnken design. The optimized LPHNPs represented excellent properties for ideal THQ delivery for oral administration. The optimized THQ-LPHNPs revealed the particles size (PS), polydispersity index (PDI), entrapment efficiency (%EE), and zeta potential (ZP) of <200 nm, <0.25, >85%, and >25 mV, respectively. THQ-LPHNPs represented excellent stability in the gastrointestinal milieu and storage stability in different environmental conditions. THQ-LPHNPs represented almost similar release profiles in both gastric as well as intestinal media with the initial fast release for 4 h and after that a sustained release up to 48 h. Further, the optimized THQ-LPHNPs represent excellent mucin binding efficiency (>70%). Cytotoxicity study revealed much better anti-breast cancer activity of THQ-LPHNPs compared with free THQ against MDA-MB-231 and MCF-7 breast cancer cells. Moreover, ex vivo experiments revealed more than three times higher permeation from the intestine after THQ-LPHNPs administration compared to the conventional THQ suspension. Furthermore, the THQ-LPHNPs showed 4.74-fold enhanced bioavailability after oral administration in comparison with the conventional THQ suspension. Therefore, from the above outcomes, mucoadhesive LPHNPs might be suitable nano-scale carriers for enhanced oral bioavailability and therapeutic efficacy of highly lipophilic phytochemicals such as THQ.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3