Comparative Assessment of Different Pre-Treatment Bonding Strategies to Improve the Adhesion of Self-Adhesive Composites to Dentin

Author:

Inglês Magali,Vasconcelos e Cruz Joana,Mano Azul Ana,Polido MárioORCID,Delgado António H. S.

Abstract

The aim of this study is to compare the adhesive interface formed in dentin, using self-adhesive composites applied with different bonding strategies, by testing the microtensile bond strength (μTBS) and ultramorphology through the use of light microscopy. Permanent, sound human molars were randomly allocated to six experimental groups. The groups included a negative control group, where only etching was performed via EtchOnly; a positive control group where an adhesive was applied, OptiBondFL (OBFL); and an experimental group where a primer was applied using a co-curing strategy together with a composite (Primer_CoCuring). The samples were sectioned into microspecimens for μTBS (n = 8) and into 1-mm thick slabs for light microscopy using Masson’s trichrome staining protocol (n = 3). The statistical analysis included a two-way ANOVA for μTBS data and Tukey’s HSD was used as a post-hoc test (significance level of 5%; SPSS v. 26.0). The results of the μTBS revealed that the self-adhesive composite (F = 6.0, p < 0.018) and the bonding strategy (F = 444.1, p < 0.001) significantly affected the bond strength to dentin. However, their interactions were not significant (F = 1.2, p = 0.29). Etching dentin with no additional treatment revealed the lowest μTBS (VF_EtchOnly = 2.4 ± 0.8 MPa; CC_EtchOnly = 2.0 ± 0.4 MPa), which was significantly different from using a primer (VF_CoCu = 8.8 ± 0.8 MPa; CC_CoCu = 6.3 ± 1.0 MPa) or using the full adhesive (VF_OptiBondFL = 22.4 ± 0.3 MPa; CC_OptibondFL = 21.2 ± 0.4 MPa). Microscopy images revealed that the experimental Primer_CoCuring was the only group with no collagen fibers exposed to the dentin–composite interface. Overall, the use of a primer, within the limitations of this study, increased the bonding of the self-adhesive composite and provided sufficient infiltration of the collagen based on light-microscopic imaging.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3