Nano-Hydroxyapatite from White Seabass Scales as a Bio-Filler in Polylactic Acid Biocomposite: Preparation and Characterization

Author:

Injorhor PreeyapornORCID,Trongsatitkul TatiyaORCID,Wittayakun Jatuporn,Ruksakulpiwat Chaiwat,Ruksakulpiwat YupapornORCID

Abstract

Nano-hydroxyapatite (nHAp) as a bio-filler used in PLA composites was prepared from fish by acid deproteinization (1DP) and a combination of acid-alkali deproteinization (2DP) followed by alkali heat treatment. Moreover, the PLA/nHAp composite films were developed using solution casting method. The mechanical and thermal properties of the PLA composite films with nHAp from different steps deproteinization and contents were compared. The physical properties analysis confirmed that the nHAp can be prepared from fish scales using both steps deproteinization. 1DP-nHAp showed higher surface area and lower crystallinity than 2DP-nHAp. This gave advantage of 1DP-nHAp for use as filler. PLA composite with 1DP-nHAp gave tensile strength of 66.41 ± 3.63 MPa and Young’s modulus of 2.65 ± 0.05 GPa which were higher than 2DP-nHAp at the same content. The addition of 5 phr 1DP-nHAp into PLA significantly improved the tensile strength and Young’s modulus. PLA composite solution with 1DP-nHAp at 5 phr showed electrospinnability by giving continuous fibers without beads.

Funder

Thailand Science Research and Innovation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3