A 3D-Printed Sole Design Bioinspired by Cat Paw Pad and Triply Periodic Minimal Surface for Improving Paratrooper Landing Protection

Author:

Xiao Yilin,Hu DayongORCID,Zhang Zhiqiang,Pei Baoqing,Wu Xueqing,Lin Peng

Abstract

Paratroopers are highly susceptible to lower extremity impact injuries during landing. To reduce the ground reaction force (GRF), inspired by the cat paw pad and triply periodic minimal surface (TPMS), a novel type of bionic cushion sole for paratrooper boots was designed and fabricated by additive manufacturing. A shear thickening fluid (STF) was used to mimic the unique adipose tissue with viscoelastic behavior found in cat paw pads, which is formed by a dermal layer encompassing a subcutaneous layer and acts as the primary energy dissipation mechanism for attenuating ground impact. Based on uniaxial compression tests using four typical types of cubic TPMS specimens, TPMSs with Gyroid and Diamond topologies were chosen to fill the midsole. The quasi-static and dynamic mechanical behaviors of the bionic sole were investigated by quasi-static compression tests and drop hammer tests, respectively. Then, drop landing tests at heights of 40 cm and 80 cm were performed on five kinds of soles to assess the cushioning capacity and compare them with standard paratrooper boots and sports shoes. The results showed that sports shoes had the highest cushioning capacity at a height of 40 cm, whereas at a height of 80 cm, the sole with a 1.5 mm thick Gyroid configuration and STF filling could reduce the maximum peak GRF by 15.5% when compared to standard paratrooper boots. The present work has implications for the design of novel bioinspired soles for reducing impact force.

Funder

National Natural Science Foundation of China

STU Scientific Research Foundation for Talents

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3