Modeling Fire Boundary Formation Based on Machine Learning in Liangshan, China

Author:

Xu Yiqing1ORCID,Sun Yanyan2ORCID,Zhang Fuquan2,Jiang Hanyuan3

Affiliation:

1. School of Computer and Software, Nanjing Vocational University of Industry Technology, Nanjing 210023, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

3. School of Electrical Engineering, Nanjing Normal University, Nanjing 210097, China

Abstract

Forest fires create burned and unburned areas on a spatial scale, with the boundary between these areas known as the fire boundary. Following an analysis of forest fire boundaries in the northern region of Yangyuan County, located in the Liangshan Yi Autonomous Prefecture of Sichuan Province, China, several key factors influencing the formation of fire boundaries were identified. These factors include the topography, vegetation, climate, and human activity. To explore the impact of these factors in different spaces on potential results, we varied the distances between matched sample points and built six fire environment models with different sampling distances. We constructed a matched case-control conditional light gradient boosting machine (MCC CLightGBM) to model these environment models and analyzed the factors influencing fire boundary formation and the spatial locations of the predicted boundaries. Our results show that the MCC CLightGBM model performs better when points on the selected boundaries are paired with points within the burned areas, specifically between 120 m and 480 m away from the boundaries. By using the MCC CLightGBM model to predict the probability of boundary formation under six environmental models at different distances, we found that fire boundaries are most likely to form near roads and populated areas. Boundary formation is also influenced by areas with significant topographic relief. It should be noted explicitly that this conclusion is only applicable to this study region and has not been validated for other different regions. Finally, the matched case-control conditional random forest (MCC CRF) model was constructed for comparison experiments. The MCC CLightGBM model demonstrates potential in predicting fire boundaries and fills a gap in research on fire boundary predictions in this area which can be useful in future forest fire management, allowing for a quick and intuitive assessment of where a fire has stopped.

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3