Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS

Author:

Park Hang-Soo1ORCID,Cetin Esra1,Siblini Hiba1,Seok Jin1ORCID,Alkelani Hiba1,Alkhrait Samar1,Liakath Ali Farzana1ORCID,Mousaei Ghasroldasht Mohammad1ORCID,Beckman Analea1,Al-Hendy Ayman1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA

Abstract

Polycystic ovary syndrome (PCOS) is known as the most common endocrine disorder in women. Previously, we suggested that human mesenchymal stem cells (MSCs) can reverse the PCOS condition by secreting factors. Here, we evaluated the therapeutic capability of MSC-derived extracellular vesicles (EVs), also known as exosomes, in both in vitro and in vivo PCOS models. Exosomes were used to treat androgen-producing H293R cells and injected in a mouse model through intraovarian and intravenous injection into a letrozole (LTZ)-induced PCOS mouse model. We assessed the effects of the exosomes on androgen-producing cells or the PCOS mouse model by analyzing steroidogenic gene expression (quantitative real-time polymerase chain reaction (qRT–PCR)), body weight change, serum hormone levels, and fertility by pup delivery. Our data show the therapeutic effect of MSC-derived EVs for reversing PCOS conditions, including fertility issues. Interestingly, intravenous injection was more effective for serum glucose regulation, and an intraovarian injection was more effective for ovary restoration. Our study suggests that MSC-derived exosomes can be promising biopharmaceutics for treating PCOS conditions as a novel therapeutic option. Despite the fact that we need more validation in human patients, we may evaluate this novel treatment option for PCOS with the following clinical trials.

Funder

University of Chicago

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3