Evaluation of a Set of miRNAs in 26 Cases of Fatal Traumatic Brain Injuries

Author:

Bonin Serena1ORCID,D’Errico Stefano1,Medeot Caterina1ORCID,Moreschi Carlo2,Ciglieri Solange Sorçaburu1,Peruch Michela1,Concato Monica1,Azzalini Eros1ORCID,Previderè Carlo3,Fattorini Paolo1ORCID

Affiliation:

1. DSM—Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy

2. DAME—Department of Medical Area, University of Udine, 33100 Udine, Italy

3. Department of Public Health, Experimental, and Forensic Medicine, Section of Legal Medicine and Forensic Sciences, University of Pavia, 27100 Pavia, Italy

Abstract

In forensic medicine, identifying novel biomarkers for use as diagnostic tools to ascertain causes of death is challenging because of sample degradation. To that aim, a cohort (n = 26) of fatal traumatic brain injuries (TBIs) were tested for three candidate miRNAs (namely, miR-124-3p, miR-138-5p, and miR144-3p). For each case, three FFPE specimens (coup area (CA), contrecoup area (CCA), and the corpus callosum (CC)) were investigated, whereas the FFPE brain tissues of 45 subjects (deceased due to acute cardiovascular events) were used as controls. Relative quantification via the ∆∆Ct method returned significantly higher expression levels of the three candidate miRNAs (p < 0.01) in the TBI cases. No difference was detected in the expression levels of any miRNA investigated in the study among the CA, CCA, and CC. Furthermore, the analyzed miRNAs were unrelated to the TBI samples’ post-mortem intervals (PMIs). On the contrary, has-miR-124-3p ahashsa-miR-144-3p were significantly correlated (p < 0.01) with the agonal time in TBI deaths. Since the RNA was highly degraded in autoptic FFPE tissues, it was impossible to analyze the mRNA targets of the miRNAs investigated in the present study, highlighting the necessity of standardizing pre-analytical processes even for autopsy tissues.

Funder

Regione Friuli Venezia Giulia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3