Investigation of Material Loading on an Evolved Antecedent Hexagonal CSRR-Loaded Electrically Small Antenna
Author:
Ng Jake Peng Sean1ORCID, Sum Yee Loon1, Soong Boon Hee1ORCID, Monteiro Paulo J. M.2
Affiliation:
1. School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 2. Department of Civil Engineering, University of California, 725 Davis Hall, Berkeley, CA 94720, USA
Abstract
Recent advances in embedded antenna and sensor technologies for 5G communications have galvanized a response toward the investigation of their electromagnetic performance for urban contexts and civil engineering applications. This article quantitatively investigates the effects of material loading on an evolved antecedent hexagonal complementary split-ring resonator (CSRR)-loaded antenna design through simulation and experimentation. Optimization of the narrowband antenna system was first performed in a simulation environment to achieve resonance at 3.50 GHz, featuring an impedance bandwidth of 1.57% with maximum return loss and theoretical gain values of 20.0 dB and 1.80 dBi, respectively. As a proof-of-concept, a physical prototype is fabricated on a printed circuit board followed by a simulation-based parametric study involving antenna prototypes embedded into Ordinary Portland Cement pastes with varying weight percentages of iron(III) oxide inclusions. Simulation-derived and experimental results are mutually verified, achieving a systemic downward shift in resonant frequency and corresponding variations in impedance matching induced by changes in loading reactance. Finally, an inversion modeling procedure is employed using perturbation theory to extrapolate the relative permittivity of the dielectric loaded materials. Our proposed analysis contributes to optimizing concrete-embedded 5G antenna sensor designs and establishes a foundational framework for estimating unknown dielectric parameters of cementitious composites.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference38 articles.
1. Review and Implementation of Resilient Public Safety Networks: 5G, IoT, and Emerging Technologies;Ali;IEEE Netw.,2021 2. Wireless Fronthaul for 5G and Future Radio Access Networks: Challenges and Enabling Technologies;Jiang;IEEE Wirel. Commun.,2022 3. Leong, W.Y., Chuah, J.H., and Tee, B.T. (2020). The Nine Pillars of Technologies for Industry 4.0, IET Telecommunications. Chapter 24. 4. Elkorany, A.S., Mousa, A.N., Ahmad, S., Saleeb, D.A., Ghaffar, A., Soruri, M., Dalarsson, M., Alibakhshikenari, M., and Limiti, E. (2022). Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors, 22. 5. Internet-of-Things-Based Smart Cities: Recent Advances and Challenges;Mehmood;IEEE Commun. Mag.,2017
|
|