An Efficient Method to Fabricate the Mold Cavity for a Helical Cylindrical Pinion

Author:

Wu Bo1,Zhu Likuan2,Zhou Zhiwen2,Guo Cheng2,Cheng Tao1,Wu Xiaoyu2

Affiliation:

1. Guangdong University Engineering Technology Research Center for Precision Components of Intelligent Terminal of Transportation Tools, College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen 518118, China

2. Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

An efficient method was proposed to fabricate the mold cavity for a helical cylindrical pinion based on a plastic torsion forming concept. The structure of the spur gear cavity with the same profile as the end face of the target helical gear cavity was first fabricated by low-speed wire electrical discharge machining (LS-WEDM). Then, the structure of the helical gear cavity could be obtained by twisting the spur gear cavity plastically around the central axis. In this way, the fabrication process of a helical cylindrical gear cavity could be greatly simplified, compared to the fabrication of a multi-stage helical gear core electrode and the highly difficult and complex spiral EDM process in the current gear manufacturing method. Moreover, several experiments were conducted to verify this novel processing concept, and a theoretical model was established to show the relationship between the machine torsion angle and the helical angle of a helical gear. Based on this theoretical model, the experimental results showed that it is feasible to precisely control the shape accuracy of a helical cylindrical pinion mold cavity by adjusting the machine torsion angle.

Funder

National Natural Science Foundation of China

Shenzhen Stable support B Plan

Basic and Applied Basic Research Fund of Guangdong Province

Start-up funds for high-end talent research in Shenzhen

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3