Col4a3-/- Mice on Balb/C Background Have Less Severe Cardiorespiratory Phenotype and SGLT2 Over-Expression Compared to 129x1/SvJ and C57Bl/6 Backgrounds

Author:

Irion Camila I.,Williams Monique,Capcha Jose Condor,Eisenberg Trevor,Lambert Guerline,Takeuchi Lauro M.,Seo Grace,Yousefi Keyvan,Kanashiro-Takeuchi Rosemeire,Webster Keith A.,Young Karen C.,Hare Joshua M.ORCID,Shehadeh Lina A.ORCID

Abstract

Alport syndrome (AS) is a hereditary renal disorder with no etiological therapy. In the preclinical Col4a3-/- model of AS, disease progression and severity vary depending on mouse strain. The sodium-glucose cotransporter 2 (SGLT2) is emerging as an attractive therapeutic target in cardiac/renal pathologies, but its application to AS remains untested. This study investigates cardiorespiratory function and SGLT2 renal expression in Col4a3-/- mice from three different genetic backgrounds, 129x1/SvJ, C57Bl/6 and Balb/C. male Col4a3-/- 129x1/SvJ mice displayed alterations consistent with heart failure with preserved ejection fraction (HFpEF). Female, but not male, C57Bl/6 and Balb/C Col4a3-/- mice exhibited mild changes in systolic and diastolic function of the heart by echocardiography. Male C57Bl/6 Col4a3-/- mice presented systolic dysfunction by invasive hemodynamic analysis. All strains except Balb/C males demonstrated alterations in respiratory function. SGLT2 expression was significantly increased in AS compared to WT mice from all strains. However, cardiorespiratory abnormalities and SGLT2 over-expression were significantly less in AS Balb/C mice compared to the other two strains. Systolic blood pressure was significantly elevated only in mutant 129x1/SvJ mice. The results provide further evidence for strain-dependent cardiorespiratory and hypertensive phenotype variations in mouse AS models, corroborated by renal SGLT2 expression, and support ongoing initiatives to develop SGLT2 inhibitors for the treatment of AS.

Funder

National Institute of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3