Abstract
Swing usually occurs in the maneuver process of a tethered combination, which is constituted of a platform, a tether and a target (i.e., space debris) for capture. Therefore, a dynamical model of the space tethered combination was established, based on the maneuver of the mission platform in a short time. The conditions for the three swing formations of the tethered combination were obtained according to the analysis of the dynamical model. In order to solve the swing problem, anti-swing control strategies, based on linear feedback control, approximate linearization control and variable structure control, were proposed, respectively. Furthermore, simulation results verified the correctness and effectiveness of the above strategies. To test the validity of the control strategies, a ground experiment setup was built according to the similarity of dynamics. The experimental results show that linear feedback control and approximate linearization control can suppress the in-plane and out-of-plane swing of the combination rapidly.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献