Application of Biochar for Ion-Adsorption of Rare Earth Contaminated Soil Remediation: A Review

Author:

Chen Haimei12ORCID,Chen Haibin3,Kardos Levente2,Szabó Veronika1

Affiliation:

1. Department of Dendrology and Floriculture, Faculty of Horticultural Science, Hungarian University of Agriculture and Life Sciences, Villanyi ut, 29-43, 1118 Budapest, Hungary

2. Department of Agro-Environment Studies, Faculty of Horticultural Science, Hungarian University of Agriculture and Life Sciences, Villanyi ut, 29-43, 1118 Budapest, Hungary

3. School of History and Geography, Minnan Normal University, Zhangzhou 363000, China

Abstract

Rare earth elements, particularly middle and heavy rare earth, are among the most valuable resources in the pursuit of a greener economy. The production of middle and heavy rare earth elements heavily relies on ion adsorption, which constitutes over 80% of global output and is centered in southern China. Unfortunately, the extensive mining activities have led to severe environmental pollution, resource depletion, and risks to human health. In contrast, biochar application offers a cost-effective and efficient phytoremediation solution. However, existing literature on the biochar application in IAT-Res mine tailings is limited. In this paper, we conducted a literature review and summarized the contaminations in the ion adsorption mine tailings, as well as explored the potential of using biochar to remediate contaminations. We aim to raise interest and encourage further research on utilizing biochar for pollution remediation in ion adsorption rare earth mine tailings. By effectively managing contamination, this approach can contribute to the sustainable supply of ion adsorption rare earth elements while ensuring their long-term viability.

Funder

Key Project to Guide Social Development of Fujian Province

Education Research for Young and middle-aged Teachers of Fujian Educational Bureau

Minnan Normal University President’s Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3