Abstract
Luffa is a lightweight porous material with excellent biocompatibility and abundant resources. In this paper, three kinds of softening treatment methods, alkali-hydrogen peroxide (Method 1), alkali-acetic acid (Method 2), and alkali-urea (Method 3), were used to soften high-density (HD) cylindrical luffa (CL) mattress-filling materials (MFM). Microscopic observation, mechanical performance testing and other analyses were performed to evaluate the effects of the three kinds of softening methods on the wettability, compression resilience and support performance of CL MFM. The results showed that: (1) After the treatment by Method 1, Method 2 and Method 3, the peak stress of CL decreased by 73%, 10% and 27%, respectively. In addition, after three kinds of softening treatments, the uniformity of CL increased. (2) When the CL MFM of high density rank treated by Method 1 was compressed by 40%, the firmness values of the surface, core and bottom reduced by 53.49% 40.72%, and 46.17%, respectively, compared to that of untreated CL. In addition, for the CL MFM of high density rank treated by Method 3 and then compressed to 60%, the firmness of the surface layer, core layer and bottom layer reduced by 41.2%, 33.7%, and 36.9%, respectively. (3) The contact angle of luffa treated by Method 3 was the smallest, next came Method 1 and Method 2, and untreated was the largest. (4) After the treatment by Method 3, the fiber bundle of luffa was intact, and the compression resilience of the CL was obviously increased. Therefore, this method can effectively reduce the firmness of MFM and also improve the uniformity and wettability of CL.
Funder
Natural Science Foundation of Anhui Province
National Natural Science Foundation of China
Subject
General Materials Science
Reference38 articles.
1. CRITICAL COMPONENTS OF A SLEEP ASSESSMENT FOR CLINICAL PRACTICE SETTINGS
2. Back pain in the working population: prevalence rates in Dutch trades and professions
3. Biomechanical effects of a lumbar support in a mattress;Normand;J. Can. Chiropr. Assoc.,2005
4. A proposed method for quantifying low-air-loss mattress performance by moisture transport;Figliola;Ostomy Wound Manag.,2003
5. Back and Bed: Ergonomic Aspects of Sleeping;Haex,2004
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献