A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces

Author:

Ruwoldt JostORCID

Abstract

Lignosulfonates are bio-based surfactants and specialty chemicals, which are generated by breaking the near-infinite lignin network during sulfite pulping of wood. Due to their amphiphilic nature, lignosulfonates are used in manifold applications such as plasticizer, dispersant, and stabilizer formulations. Function and performance are determined by their behavior in aqueous solution and at surfaces and interfaces, which is in turn imposed by the chemical make-up. This review hence summarizes the efforts made into delineating the physicochemical properties of lignosulfonates, while also relating to their composition and structure. Lignosulfonates are randomly branched polyelectrolytes with abundant sulfonate and carboxylic acid groups to ensure water-solubility. In aqueous solution, their conformation, colloidal state, and adsorption at surfaces or interfaces can be affected by a range of parameters, such as pH, concentration of other electrolytes, temperature, and the presence of organic solvents. These parameters may also affect the adsorption behavior, which reportedly follows Langmuir isotherm and pseudo second-order kinetics. The relative hydrophobicity, as determined by hydrophobic interaction chromatography, is an indicator that can help to relate composition and behavior of lignosulfonates. More hydrophobic materials have been found to exhibit a lower charge density. This may improve dispersion stabilization, but it can also be disadvantageous if an electrokinetic charge needs to be introduced at solid surfaces or if precipitation due to salting out is an issue. In addition, the monolignol composition, molecular weight distribution, and chemical modification may affect the physicochemical behavior of lignosulfonates. In conclusion, the properties of lignosulfonates can be tailored by controlling aspects such as the production parameters, fractionation, and by subsequent modification. Recent developments have spawned a magnitude of products and technologies, which is also reflected in the wide variety of possible application areas.

Publisher

MDPI AG

Reference166 articles.

1. Production and Application of Lignosulfonates and Sulfonated Lignin

2. Bio-based chemicals from biorefining: Lignin conversion and utilisation;Macfarlane,2014

3. Wood-based lignosulfonate versus synthetic polycarboxylate in concrete admixture systems: The perspective of a traditional pulping by-product competing with an oil-based substitute in a business-to-business market in central Europe;Stern;For. Prod. J.,2008

4. New Developments in the Commercial Utilization of Lignosulfonates

5. Utilization of Lignosulfonate as Dispersants or Surfactants;Xu,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3