Viability of an Open-Loop Heat Pump Drying System in South African Climatic Conditions

Author:

Ngalonkulu Solomzi Marco1ORCID,Huan Zhongjie1

Affiliation:

1. Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Staatsartillerie Road, Pretoria West, Pretoria 0183, South Africa

Abstract

Drying agricultural produce consumes a considerable amount of energy. As an energy-efficient system, a heat pump can improve the energy efficiency of the drying process and hence reduce the energy consumption, especially in South Africa, where both sub-tropical and temperate weather conditions dominate. The objective of this research is to experimentally investigate the impacts of weather conditions on the operational conditions and thermal performance of an open-loop air-source heat pump drying system. The experimental investigation was conducted in a climate chamber where the climate conditions were simulated from −10 °C to 20 °C with an interval of 10 °C for the typical temperature range of the harvesting season in South Africa. The findings indicate that ambient temperatures have a significant impact on both the operating conditions and thermal performance of an open-loop heat pump system; the change in ambient temperatures from −10 °C to 20 °C leads to a 141.6% improvement in the suction pressure, a 214.2% increase in the discharge pressure, and 30.1% increase in the compression ratio, as well as a consequent increase of 130.6% in the refrigerant mass flow rate (from 0.0067 to 0.0155 kg/s), resulting in a corresponding increase in the coefficient of performance (COP) of the heat pump drying system by about 42.1%. Therefore, this study suggests that, while using an open-loop air-source heat pump drying system utilising R134a refrigerant is feasible in South Africa, it may be practically limited to regions with warm climates or during warmer seasons.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3