Hierarchically Distributed Charge Control of Plug-In Hybrid Electric Vehicles in a Future Smart Grid

Author:

Zhou Hanyun1ORCID,Li Wei2ORCID,Shi Jiekai2

Affiliation:

1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. College of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China

Abstract

Plug-in hybrid electric vehicles (PHEVs) are becoming increasingly widespread due to their environmental benefits. However, PHEV penetration can overload distribution systems and increase operational costs. It is a major challenge to find an economically optimal solution under the condition of flattening load demand for systems. To this end, we formulate this problem as a two-layer optimization problem, and propose a hierarchical algorithm to solve it. For the upper layer, we flatten the load demand curve by using the water-filling principle. For the lower layer, we minimize the total cost for all consumers through a consensus-like iterative method in a distributed manner. Technical constraints caused by consumer demand and power limitations are both taken into account. In addition, a moving horizon approach is used to handle the random arrival of PHEVs and the inaccuracy of the forecast base demand. This paper focuses on distributed solutions under a time-varying switching topology so that all PHEV chargers conduct local computation and merely communicate with their neighbors, which is substantially different from the existing works. The advantages of our algorithm include a reduction in computational burden and high adaptability, which clearly has its own significance for the future smart grid. Finally, we demonstrate the advantages of the proposed algorithm in both theory and simulation.

Funder

National Natural Science Foundation of China

Zhejiang Engineering Research Center for Edge Intelligence Technology and Equipment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3