Long-Term Sleep Deprivation-Induced Myocardial Remodeling and Mitochondrial Dysfunction in Mice Were Attenuated by Lipoic Acid and N-Acetylcysteine

Author:

Song Fei,Lin Jiale,Zhang Houjian,Guo Yuli,Mao Yijie,Liu Zuguo,Li Gang,Wang Yan

Abstract

The impact of long-term sleep deprivation on the heart and its underlying mechanisms are poorly understood. The present study aimed to investigate the impact of chronic sleep deprivation (CSD) on the heart and mitochondrial function and explore an effective drug for treating CSD-induced heart dysfunction. We used a modified method to induce CSD in mice; lipoic acid (LA) and N-acetylcysteine (NAC) were used to treat CSD mice. Echocardiography, hematoxylin-eosin (H&E) staining, Sirius red staining, and immunohistochemistry were used to determine heart function and cardiac fibrosis. The serum levels of brain natriuretic peptide (BNP), superoxide Dismutase (SOD), micro malondialdehyde (MDA), and glutathione (GSH) were measured to determine cardiovascular and oxidative stress-related damage. Transmission electron microscopy was used to investigate mitochondrial damage. RNA-seq and Western blotting were used to explore related pathways. We found that the left ventricular ejection fraction (LVEF) and fraction shortening (LVFS) values were significantly decreased and myocardial hypertrophy was induced, accompanied by damaged mitochondria, elevated reactive oxygen species (ROS), and reduced SOD levels. RNA-sequence analysis of the heart tissue showed that various differentially expressed genes in the metabolic pathway were enriched. Sirtuin 1 (Sirt1) and Glutathione S-transferase A3 (Gsta3) may be responsible for CSD-induced heart and mitochondrial dysfunction. Pharmacological inhibition of ROS by treating CSD mice with LA and NAC effectively reduced heart damage and mitochondrial dysfunction by regulating Sirt1 and Gsta3 expression. Our data contribute to understanding the pathways of CSD-induced heart dysfunction, and pharmacological targeting to ROS may represent a strategy to prevent CSD-induced heart damage.

Funder

National Natural Science Foundation of China

the National Key R&D Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3