The Influence of Interlayer on the Development of Steam Chamber in Steam Stimulation during Heavy Oil Recovery

Author:

Fan Hongjun1,Fan Tingen1,Deng Junhui2ORCID,Zhang Lijun1,Zheng Wei1,Chen Lifeng2,Ge Zunzeng1,Xie Haojun1,Liang Xu1

Affiliation:

1. CNOOC Research Institute Co., Ltd., Beijing 100028, China

2. School of Petroleum Engineering, Yangtze University, Wuhan 430100, China

Abstract

Cyclic steam stimulation is an effective thermal recovery method for heavy oil recovery. The key potential mechanism is the growth of the steam chamber after steam injection. Taking the LD5X heavy oil reservoir as an example, besides the interlayer developed in this area, the top water and bottom water distribute above and below the interlayer. These factors may have adverse effects on the development of the steam chamber, thus affecting the final heavy oil exploitation. In this work, our goal is to study the effects of interlayer permeability and well–interlayer distance on CSS performance (in the presence of top and bottom water). We developed a high-temperature-resistant interlayer. Based on the simulated interlayer, the field scale model was converted into a laboratory element model through the similarity criterion. In order to quantitatively evaluate the performance of steam stimulation, a thermal detector was used to measure the dynamic growth of the steam chamber and record the production data. The experimental results show that the self-made interlayer has high-temperature resistance, adjustable permeability, and little difference between the physical parameters and the target interlayer. During the cyclic steam stimulation process, the steam chamber presents two different stages in the presence of the top water area, namely the normal production stage and the top water discharge stage. The bottom water has little effect on the growth of the steam chamber. The small interlayer permeability, the increase in horizontal well–interlayer distance, and the existence of the interlayer will delay the top water leakage during steam stimulation. This study has reference significance for us to develop heavy oil resources with a top water barrier when implementing steam stimulation technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3