Performing Hydrological Monitoring at a National Scale by Exploiting Rain-Gauge and Radar Networks: The Italian Case

Author:

Bruno Giulia,Pignone Flavio,Silvestro Francesco,Gabellani Simone,Schiavi Federico,Rebora Nicola,Giordano Pietro,Falzacappa Marco

Abstract

Hydrological monitoring systems relying on radar data and distributed hydrological models are now feasible at large-scale and represent effective early warning systems for flash floods. Here we describe a system that allows hydrological occurrences in terms of streamflow at a national scale to be monitored. We then evaluate its operational application in Italy, a country characterized by various climatic conditions and topographic features. The proposed system exploits a modified conditional merging (MCM) algorithm to generate rainfall estimates by blending data from national radar and rain-gauge networks. Then, we use the merged rainfall fields as input for the distributed and continuous hydrological model, Continuum, to obtain real-time streamflow predictions. We assess its performance in terms of rainfall estimates from MCM, using cross-validation and comparison with a conditional merging technique at an event-scale. We also assess its performance against rainfall fields from ground-based data at catchment-scale. We further evaluate the performance of the hydrological system in terms of streamflow against observed data (relative error on high flows less than 25% and Nash–Sutcliffe Efficiency greater than 0.5 for 72% and 46% of the calibrated study sections, respectively). These results, therefore, confirm the suitability of such an approach, even at national scale, over a wide range of catchment types, climates, and hydrometeorological regimes, and for operational purposes.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3