Particle Number Emissions of Gasoline, Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) Fueled Vehicles at Different Ambient Temperatures

Author:

Lähde Tero,Giechaskiel Barouch

Abstract

Compressed natural gas (CNG) and liquefied petroleum gas (LPG) are included in the group of promoted transport fuel alternatives for traditional fossil fuels in Europe. Both CNG and LPG fueled vehicles are believed to have low particle number and mass emissions. Here, we studied the solid particle number (SPN) emissions >4 nm, >10 nm and >23 nm of bi-fuel vehicles applying CNG, LPG and gasoline fuels in laboratory at 23 °C and sub-zero (−7 °C) ambient temperature conditions. The SPN23 emissions in CNG or LPG operation modality at 23 °C were below the regulated SPN23 limit of diesel and gasoline direct injection vehicles 6×1011 1/km. Nevertheless, the limit was exceeded at sub-zero temperatures, when sub-23 nm particles were included, or when gasoline was used as a fuel. The key message of this study is that gas-fueled vehicles produced particles mainly <23 nm and the current methodology might not be appropriate. However, only in a few cases absolute SPN >10 nm emission levels exceeded 6×1011 1/km when >23 nm levels were below 6×1011 1/km. Setting a limit of 1×1011 1/km for >10 nm particles would also limit most of the >4 nm SPN levels below 6×1011 1/km.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference65 articles.

1. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the Promotion of the Use of Biofuels or Other Renewable Fuels for Transport;Off. J. Eur. Union,2003

2. EAFO European Alternative Fuels Observatoryhttps://www.eafo.eu/

3. Alternative fuels for internal combustion engines

4. Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue

5. The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3