Abstract
In this study, National Centers for Environmental Prediction (NCEP) Final (FNL) operational global analysis data and meteorological observation data from 2013 to 2017 were used to evaluate the impact of seasonal changes and different circulation classifications on the dynamical downscaling simulation results of Weather Research and Forecasting (WRF) in the Pearl River Delta (PRD) region. The results show that the dynamical downscaling method can accurately simulate the time variation characteristics of the near-surface meteorological field and the hit rates of a 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind direction are 92.66%, 93.98%, 26.78%, and 76.78%, respectively. The WRF model slightly underestimates the temperature and relative humidity, and overestimates the wind speed and precipitation. For precipitation, the WRF model can better simulate the variation characteristics of light rain and heavy rain, with the probability of detection are 0.59 and 0.69, respectively. For seasonal factors, the WRF model can conduct a perfect simulation in autumn and winter, followed by spring, while summer is vulnerable to extreme weather, so the result of the simulation is relatively poor. The circulation type is an important parameter of downscaling assessment. When the PRD is controlled by high pressure, the simulated results of WRF are good, and when the PRD is affected by low pressure or extreme weather, the simulation results are relatively poor.
Funder
National Natural Science Foundation of China
CAMS Basis Research
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献