Study on Heat Transfer Synergy and Optimization of Capsule-Type Plate Heat Exchangers

Author:

Yu Chao1ORCID,Shao Mingzhen1,Zhang Wenbao1,Wang Guangyi1,Huang Mian1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

Abstract

An efficient and accurate method for optimizing capsule-type plate heat exchangers is proposed in this paper. This method combines computational fluid dynamics simulation, a backpropagation algorithm and multi-objective optimization to obtain better heat transfer performance of heat exchanger structures. For plate heat exchangers, the heat transfer coefficient j and friction coefficient f are a pair of contradictory objectives. The optimization of capsule-type plate heat exchangers is a multi-objective optimization problem. In this paper, a backpropagation neural network was used to construct an approximate model. The plate shape was optimized by a multi-objective genetic algorithm. The optimized capsule-type plate heat exchanger has lower flow resistance and higher heat exchange efficiency. After optimization, the heat transfer coefficient is increased by 8.3% and the friction coefficient is decreased by 14.3%, and the heat transfer effect is obviously improved. Further, analysis of flow field characteristics through field co-ordination theory provides guidance for the further optimization of plates.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3