Combining Transcriptomic and Metabolomic Analyses to Investigate the Acute Effects of Microcystin-LR and Nanoplastics of Asian Clams

Author:

Zhang Jiahua12,Wang Jie12,Liu Shikun1,Zhou Yin1,Liu Xingguo12

Affiliation:

1. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China

2. Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China

Abstract

In agricultural and fishery production, the occurrence of cyanobacterial blooms and the contamination of freshwater systems with microplastics have become increasingly important research focuses. However, the individual and combined toxic mechanisms of these two pollutants are not yet fully understood. Therefore, in this study, we analyzed the effects of these two stressors, microcystins (MC) and nanoplastics (NP), on the transcriptome and metabolome of the hepatopancreas of river clams. RNA and metabolites extracted from river clams treated with MC, NP, and a combination of MC and NP were used to construct standardized cDNA libraries, which were then subjected to integrated analysis. Significant enrichment of 49 pathways, 34 pathways, and 44 pathways was observed in the MC group compared to the control group, NP group compared to the control group, and NP-MC group compared to the control group, respectively. In these three experimental groups, we found that the lysosome pathway, which affects immune function and cell apoptosis, was enriched with numerous differentially expressed genes and metabolites. Changes in ATP6N and ADP may impair lysosomal acidification and disrupt normal lysosomal degradation processes, indicating interference with the hepatopancreatic metabolism of pollutants. Interestingly, we observed significant alterations in the cathepsin family, and the downregulation of cathepsin genes, along with the downregulation of ATP6N, implies a potential disruption in lysosomal proteolysis. In the NP-MC group, the downregulation of purine expression levels suggests an impact on the immune system of river clams by NP-MC. In conclusion, while there is some overlap in the damage caused to the hepatopancreas of river clams by MCs, MPs, and the combination of NP-MC, further research is necessary to fully understand their effects.

Funder

National Freshwater Genetic Resource Center

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3