Investigation into the Effect of Multi-Component Coal Blends on Properties of Metallurgical Coke via Petrographic Analysis under Industrial Conditions

Author:

Kieush LinaORCID,Koveria AndriiORCID,Schenk JohannesORCID,Rysbekov KanayORCID,Lozynskyi VasylORCID,Zheng Heng,Matayev AzamatORCID

Abstract

The coalification rank of the coal blend components and their caking properties initially impact the coke’s quality. In part, the quality of coke depends on the technological parameters of the coke production technology, such as the method of blend preparation, the coking condition, the design features of the coke ovens, and the technique used for post-oven treatment. Therefore, to improve the coke quality, the main attention is paid to the quality of the coal blend. The petrographic analysis is the simplest and most reliable way to control coal quality indicators under industrial conditions. In this paper, the effect of nine industrial blends on coke quality using petrographic analysis has been studied. Additionally, this paper addresses the efficient use of coals and the preparation of coal mixtures under industrial conditions, which contributes to the sustainability of cokemaking. For the preparation of blends, 17 coals were used, for which, in addition to petrographic and proximate analyzes, the maximum thickness of the plastic layer was determined. Industrially produced cokes were analyzed for coke reactivity index (CRI), coke strength after reaction with CO2 (CSR), and Micum indices (M25 and M10). It has been established that the petrographic properties of coal blends are reliable parameters for assessing the quality of coke under conditions of an unstable raw material base, multi-component blends, and changes in coking regimes. Moreover, the research results have shown that to ensure the rational use of coals in the preparation of coal blends to achieve the required coke quality and consequently the sustainability of cokemaking, it is necessary to consider not only the mean reflectance of vitrinite but the proximate and caking properties of coals.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3