Energy-Efficient and Secure Double RIS-Aided Wireless Sensor Networks: A QoS-Aware Fuzzy Deep Reinforcement Learning Approach

Author:

Khatami Sarvenaz Sadat1,Shoeibi Mehrdad2ORCID,Salehi Reza3,Kaveh Masoud3ORCID

Affiliation:

1. Department of Data Science Engineering, University of Houston, Houston, TX 77204, USA

2. The WPI Business School, Worcester Polytechnic Institute, Worcester, MA 01605, USA

3. Department of Information and Communication Engineering, Aalto University, 02150 Espoo, Finland

Abstract

Wireless sensor networks (WSNs) are a cornerstone of modern Internet of Things (IoT) infrastructure, enabling seamless data collection and communication for many IoT applications. However, the deployment of WSNs in remote or inaccessible locations poses significant challenges in terms of energy efficiency and secure communication. Sensor nodes, with their limited battery capacities, require innovative strategies to minimize energy consumption while maintaining robust network performance. Additionally, ensuring secure data transmission is critical for safeguarding the integrity and confidentiality of IoT systems. Despite various advancements, existing methods often fail to strike an optimal balance between energy efficiency and quality of service (QoS), either depleting limited energy resources or compromising network performance. This paper introduces a novel framework that integrates double reconfigurable intelligent surfaces (RISs) into WSNs to enhance energy efficiency while ensuring secure communication. To jointly optimize both RIS phase shift matrices, we employ a fuzzy deep reinforcement learning (FDRL) framework that integrates reinforcement learning (RL) with fuzzy logic and long short-term memory (LSTM)-based architecture. The RL component learns optimal actions by iteratively interacting with the environment and updating Q-values based on a reward function that prioritizes both energy efficiency and secure communication. The LSTM captures temporal dependencies in the system state, allowing the model to make more informed predictions about future network conditions, while the fuzzy logic layer manages uncertainties by using optimized membership functions and rule-based inference. To explore the search space efficiently and identify optimal parameter configurations, we use the advantage of the multi-objective artificial bee colony (MOABC) algorithm as an optimization strategy to fine-tune the hyperparameters of the FDRL framework while simultaneously optimizing the membership functions of the fuzzy logic system to improve decision-making accuracy under uncertain conditions. The MOABC algorithm enhances convergence speed and ensures the adaptability of the proposed framework in dynamically changing environments. This framework dynamically adjusts the RIS phase shift matrices, ensuring robust adaptability under varying environmental conditions and maximizing energy efficiency and secure data throughput. Simulation results validate the effectiveness of the proposed FDRL-based double RIS framework under different system configurations, demonstrating significant improvements in energy efficiency and secrecy rate compared to existing methods. Specifically, quantitative analysis demonstrates that the FDRL framework improves energy efficiency by 35.4%, the secrecy rate by 29.7%, and RSMA by 27.5%, compared to the second-best approach. Additionally, the model achieves an R² score improvement of 12.3%, confirming its superior predictive accuracy.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3