Abstract
Arterial stenosis is a problem of immediate significance, as cardiovascular disease is the number one leading cause of death worldwide. Generally, the study of stenotic flow assumes a smooth, curved stenosis and artery. However, the real situation is unlikely to present an infinitely smooth-surfaced arterial stenosis. Here, the impact of surface roughness on the flow in an arterial stenosis was studied via a computational fluid dynamics analysis. A patient-specific geometry with a smooth surface was reconstructed, and a partially rough model was built by artificially adding random roughness only on the stenotic region of the smooth model. It was found that the flow was oscillatory downstream of the stenosis in the models. A slightly lower velocity near the wall and more oscillatory flows were observed due to the presence of the roughness in the stenotic region. However, the pressure distributions did not vary significantly between the smooth and rough models. The differences in the wall shear metrics were slight in the stenotic region and became larger in the downstream region of the models.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献