Reliability-Based Robust Design Optimization of Lithium-Ion Battery Cells for Maximizing the Energy Density by Increasing Reliability and Robustness

Author:

Park Jinhwan,Yoo Donghyeon,Moon Jaemin,Yoon Janghyeok,Park JungtaeORCID,Lee Seungae,Lee DooheeORCID,Kim ChangwanORCID

Abstract

Lithium-ion batteries (LIBs) are increasingly employed in electric vehicles (EVs) owing to their advantages, such as low weight, and high energy and power densities. However, the uncertainty encountered in the manufacturing of LIB cells increases the failure rate and causes cell-to-cell variations, thereby degrading the battery capacity and lifetime. In this study, the reliability and robustness of LIB cells were improved using the design of experiments (DOE), and the reliability-based robust design optimization (RBRDO) approaches. First, design factors sensitive to the energy density and power density were selected as design variables through sensitivity analysis using the DOE. RBRDO was performed to maximize the energy density while reducing the failure rate and cell-to-cell variations. To verify the superiority of the reliability and robustness offered by RBRDO, the obtained results were compared with those from conventional deterministic design optimization (DDO), and reliability-based design optimization (RBDO). RBRDO increased the mean of the energy density by 33.5% compared to the initial value and reduced the failure rate by 98.9%, due to improved reliability, compared to DDO. Moreover, RBRDO reduced the standard deviation in the energy density (i.e., cell-to-cell variations) by 30.0% due to the improved robustness compared to RBDO.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3