Integrating Remote Sensing Data and CNN-LSTM-Attention Techniques for Improved Forest Stock Volume Estimation: A Comprehensive Analysis of Baishanzu Forest Park, China

Author:

Wang Bo1ORCID,Chen Yao1ORCID,Yan Zhijun1,Liu Weiwei2

Affiliation:

1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Zhejiang Academy of Surveying and Mapping Science and Technology, Hangzhou 311100, China

Abstract

Forest stock volume is the main factor to evaluate forest carbon sink level. At present, the combination of multi-source remote sensing and non-parametric models has been widely used in FSV estimation. However, the biodiversity of natural forests is complex, and the response of the spatial information of remote sensing images to FSV is significantly reduced, which seriously affects the accuracy of FSV estimation. To address this challenge, this paper takes China’s Baishanzu Forest Park with representative characteristics of natural forests as the research object, integrates the forest survey data, SRTM data, and Landsat 8 images of Baishanzu Forest Park, constructs a time series dataset based on survey time, and establishes an FSV estimation model based on the CNN-LSTM-Attention algorithm. The model uses the convolutional neural network to extract the spatial features of remote sensing images, uses the LSTM to capture the time-varying characteristics of FSV, captures the feature variables with a high response to FSV through the attention mechanism, and finally completes the prediction of FSV. The experimental results show that some features (e.g., texture, elevation, etc.) of the dataset based on multi-source data feature variables are more effective in FSV estimation than spectral features. Compared with the existing models such as MLR and RF, the proposed model achieved higher accuracy in the study area (R2 = 0.8463, rMSE = 26.73 m3/ha, MAE = 16.47 m3/ha).

Funder

Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3