Protective Effects of 3′-Epilutein and 3′-Oxolutein against Glutamate-Induced Neuronal Damage

Author:

Pap Ramóna1ORCID,Pandur Edina1ORCID,Jánosa Gergely1,Sipos Katalin1ORCID,Fritz Ferenc Rómeó1,Nagy Tamás2ORCID,Agócs Attila3,Deli József34ORCID

Affiliation:

1. Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary

2. Department of Laboratory Medicine, Faculty of Medical Sciences, University of Pécs, Ifjúság út 13, H-7624 Pécs, Hungary

3. Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary

4. Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary

Abstract

Dietary lutein can be naturally metabolized to 3′-epilutein and 3′-oxolutein in the human body. The epimerization of lutein can happen in acidic pH, and through cooking, 3′-epilutein can be the product of the direct oxidation of lutein in the retina, which is also present in human serum. The 3′-oxolutein is the main oxidation product of lutein. Thus, the allylic oxidation of dietary lutein can result in the formation of 3′-oxolutein, which may undergo reduction either to revert to dietary lutein or epimerize to form 3′-epilutein. We focused on the effects of 3′-epilutein and 3′-oxolutein itself and on glutamate-induced neurotoxicity on SH-SY5Y human neuroblastoma cells to identify the possible alterations in oxidative stress, inflammation, antioxidant capacity, and iron metabolism that affect neurological function. ROS measurements were performed in the differently treated cells. The inflammatory state of cells was followed by TNFα, IL-6, and IL-8 cytokine ELISA measurements. The antioxidant status of the cells was determined by the total antioxidant capacity kit assay. The alterations of genes related to ferroptosis and lipid peroxidation were followed by gene expression measurements; then, thiol measurements were performed. Lutein metabolites 3′-epilutein and 3′-oxolutein differently modulated the effect of glutamate on ROS, inflammation, ferroptosis-related iron metabolism, and lipid peroxidation in SH-SY5Y cells. Our results revealed the antioxidant and anti-inflammatory features of 3′-epilutein and 3′-oxolutein as possible protective agents against glutamate-induced oxidative stress in SH-SY5Y cells, with greater efficacy in the case of 3′-epilutein.

Funder

Hungarian Scientific Research Fund

PTE GYTK-KK Collaboration Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3