Reducing 3D Hydrogel Stiffness, Addition of Oestradiol in a Physiological Concentration and Increasing FSH Concentration Improve In Vitro Growth of Murine Preantral Follicles

Author:

Zheng Mengxue12,Cadenas Jesús1ORCID,Pors Susanne Elisabeth1,Esa Tasnim3,Kristensen Stine Gry1ORCID,Mamsen Linn Salto1ORCID,Adrados Cristina Subiran12ORCID,Andersen Claus Yding2ORCID

Affiliation:

1. Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, 2100 Copenhagen, Denmark

2. The Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, 2200 Copenhagen, Denmark

3. The Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

This study aimed to optimise culture conditions for murine preantral follicles to improve their growth and survival. Preantral follicles (diameter 100–130 µm) were isolated from prepubertal NMRI mice and individually cultured within alginate beads for 12 days. Three conditions were evaluated: (1) follicle re-encapsulation on day 6 of culture-reducing alginate concentration (0.5% to 0.25% w/v), (2) the presence of oestradiol (E2), and (3) increased follicle-stimulating hormone (FSH) concentration in the culture medium (from 10 to 100 mIU/mL FSH). Follicle morphology and growth, as well as anti-Müllerian hormone (AMH) production, were evaluated. From day 8, re-embedded follicles had a larger average diameter compared to follicles without alginate re-encapsulation (0.5% and 0.25% groups, p < 0.05). Oestradiol (1 µM) had a significantly positive effect on the mean follicular diameter and antrum formation (p < 0.001). Moreover, follicles cultured with 100 mIU/mL FSH showed faster growth (p < 0.05) and significantly higher antrum formation (p < 0.05) compared to the low FSH group. Nevertheless, AMH production was not affected by any of the culture conditions. In conclusion, the growth and survival of mouse preantral follicles during a 12-day period were improved by altering the alginate concentration midways during culture and adding E2 and FSH to the culture medium.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3