Matrine Targets Intestinal Lactobacillus acidophilus to Inhibit Porcine Circovirus Type 2 Infection in Mice

Author:

Cao Zhigang1,Ling Xiaoya1ORCID,Sun Panpan1,Zheng Xiaozhong2,Zhang Hua1,Zhong Jia1,Yin Wei1,Fan Kuohai3,Sun Yaogui1,Li Hongquan1,Sun Na1

Affiliation:

1. Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China

2. Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK

3. Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, China

Abstract

Porcine circovirus type 2 (PCV2) has caused huge economic losses to the pig industry across the world. Matrine is a natural compound that has been shown to regulate intestinal flora and has anti-PCV2 activity in mouse models. PCV2 infection can lead to changes in intestinal flora. The intestinal flora has proved to be one of the important pharmacological targets of the active components of Traditional Chinese Medicine. This study aimed to determine whether matrine exerts anti-PCV2 effects by regulating intestinal flora. In this study, fecal microbiota transplantation (FMT) was used to evaluate the effect of matrine on the intestinal flora of PCV2-infected Kunming (KM) mice. The expression of the Cap gene in the liver and the ileum, the relative expression of IL-1β mRNA, and the Lactobacillus acidophilus (L. acidophilus) gene in the ileum of mice were determined by real-time quantitative polymerase chain reaction (qPCR). ELISA was used to analyze the content of secretory immunoglobulin A (SIgA) in small intestinal fluid. L. acidophilus was isolated and identified from the feces of KM mice in order to study its anti-PCV2 effect in vivo. The expression of the Cap gene in the liver and the ileum and the relative expression of L. acidophilus and IL-1β mRNA in the ileum were determined by qPCR. The results showed that matrine could reduce the relative expression of IL-1β mRNA by regulating intestinal flora, and that its pharmacological anti-PCV2 and effect may be related to L. acidophilus. L. acidophilus was successfully isolated and identified from the feces of KM mice. The in vivo experiment revealed that administration of L. acidophilus also reduced the relative expression of IL-1β mRNA, and that it had anti-PCV2 effects in PCV2-infected mice. It was found that matrine could regulate the abundance of L. acidophilus in the gut of mice to exert an anti-PCV2 effect and inhibit PCV2-induced inflammatory response.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Key Research and Development Plan of Shanxi Province

Science and Technology Innovation Teams of Shanxi Province

Shanxi “1331 Project”

Modern Agro-industry Technology Research System

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3