Growth Behavior, Biomass Composition and Fatty Acid Methyl Esters (FAMEs) Production Potential of Chlamydomonas reinhardtii, and Chlorella vulgaris Cultures

Author:

López-Pacheco Itzel Y.12,Ayala-Moreno Victoria Guadalupe3,Mejia-Melara Catherinne Arlette3,Rodríguez-Rodríguez José1ORCID,Cuellar-Bermudez Sara P.12ORCID,González-González Reyna Berenice12ORCID,Coronado-Apodaca Karina G.12ORCID,Farfan-Cabrera Leonardo I.1,González-Meza Georgia María12,Iqbal Hafiz M. N.12ORCID,Parra-Saldívar Roberto12ORCID

Affiliation:

1. Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico

2. Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico

3. Francisco Morazán Department, Escuela Agrícola Panamericana, Zamorano, Km 30 Carretera de Tegucigalpa a Danlí, Valle del Yeguare, Municipio de San Antonio de Oriente, Tegucigalpa 11101, Honduras

Abstract

The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae’s great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L−1) and carbohydrates (163 mg g−1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g−1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L−1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g−1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.

Funder

Consejo Nacional de Humanidades, Ciencias y Tecnologías

Tecnologico de Monterrey project

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3