Drug Delivery through Epidermal Tissue Cells by Functionalized Biosilica from Diatom Microalgae

Author:

Vona Danilo1ORCID,Flemma Annarita1ORCID,Piccapane Francesca2,Cotugno Pietro1,Cicco Stefania Roberta3ORCID,Armenise Vincenza1ORCID,Vicente-Garcia Cesar1ORCID,Giangregorio Maria Michela4,Procino Giuseppe2ORCID,Ragni Roberta1ORCID

Affiliation:

1. Chemistry Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy

2. Bioscience, Biotechnology and Biopharmaceutics Department, University of Bari “Aldo Moro”, Via Orabona 4, I-70126 Bari, Italy

3. Institute for the Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Chemistry Department, Via Orabona 4, I-70126 Bari, Italy

4. Institute of Nanotechnology (Nanotec), Consiglio Nazionale delle Ricerche (CNR), Chemistry Department, Via Orabona 4, I-70126 Bari, Italy

Abstract

Diatom microalgae are a natural source of fossil biosilica shells, namely the diatomaceous earth (DE), abundantly available at low cost. High surface area, mesoporosity and biocompatibility, as well as the availability of a variety of approaches for surface chemical modification, make DE highly profitable as a nanostructured material for drug delivery applications. Despite this, the studies reported so far in the literature are generally limited to the development of biohybrid systems for drug delivery by oral or parenteral administration. Here we demonstrate the suitability of diatomaceous earth properly functionalized on the surface with n-octyl chains as an efficient system for local drug delivery to skin tissues. Naproxen was selected as a non-steroidal anti-inflammatory model drug for experiments performed both in vitro by immersion of the drug-loaded DE in an artificial sweat solution and, for the first time, by trans-epidermal drug permeation through a 3D-organotypic tissue that better mimics the in vivo permeation mechanism of drugs in human skin tissues. Octyl chains were demonstrated to both favour the DE adhesion onto porcine skin tissues and to control the gradual release and the trans-epidermal permeation of Naproxen within 24 h of the beginning of experiments. The evidence of the viability of human epithelial cells after permeation of the drug released from diatomaceous earth, also confirmed the biocompatibility with human skin of both Naproxen and mesoporous biosilica from diatom microalgae, disclosing promising applications of these drug-delivery systems for therapies of skin diseases.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3