Fundamental Clock of Biological Aging: Convergence of Molecular, Neurodegenerative, Cognitive and Psychiatric Pathways: Non-Equilibrium Thermodynamics Meet Psychology

Author:

Dyakin Victor V.,Dyakina-Fagnano Nuka V.,Mcintire Laura B.,Uversky Vladimir N.ORCID

Abstract

In humans, age-associated degrading changes, widely observed in molecular and cellular processes underly the time-dependent decline in spatial navigation, time perception, cognitive and psychological abilities, and memory. Cross-talk of biological, cognitive, and psychological clocks provides an integrative contribution to healthy and advanced aging. At the molecular level, genome, proteome, and lipidome instability are widely recognized as the primary causal factors in aging. We narrow attention to the roles of protein aging linked to prevalent amino acids chirality, enzymatic and spontaneous (non-enzymatic) post-translational modifications (PTMs SP), and non-equilibrium phase transitions. The homochirality of protein synthesis, resulting in the steady-state non-equilibrium condition of protein structure, makes them prone to multiple types of enzymatic and spontaneous PTMs, including racemization and isomerization. Spontaneous racemization leads to the loss of the balanced prevalent chirality. Advanced biological aging related to irreversible PTMs SP has been associated with the nontrivial interplay between somatic (molecular aging) and mental (psychological aging) health conditions. Through stress response systems (SRS), the environmental and psychological stressors contribute to the age-associated “collapse” of protein homochirality. The role of prevalent protein chirality and entropy of protein folding in biological aging is mainly overlooked. In a more generalized context, the time-dependent shift from enzymatic to the non-enzymatic transformation of biochirality might represent an important and yet underappreciated hallmark of aging. We provide the experimental arguments in support of the racemization theory of aging.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3