Identification of Unique Key miRNAs, TFs, and mRNAs in Virulent MTB Infection Macrophages by Network Analysis

Author:

Zhu Tingting,Liu Han,Su Li,Dawood Ali,Hu Changmin,Chen Xi,Chen Huanchun,Chen Yingyu,Guo Aizhen

Abstract

Although Mycobacterium tuberculosis (MTB) has existed for thousands of years, its immune escape mechanism remains obscure. Increasing evidence signifies that microRNAs (miRNAs) play pivotal roles in the progression of tuberculosis (TB). RNA sequencing was used to sequence miRNAs in human acute monocytic leukemia cells (THP-1) infected by the virulent MTB-1458 strain and the avirulent vaccine strain Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Sets of differentially expressed miRNAs (DE-miRNAs) between MTB-1458/BCG-infected groups and uninfected groups were identified, among which 18 were differentially expressed only in the MTB-1458-infected THP-1 group. Then, 13 transcription factors (TFs) and 81 target genes of these 18 DE-miRNAs were matched. Gene Ontology classification as well as Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the candidate targets were predominantly involved in apoptotic-associated and interferon-γ-mediated signaling pathways. A TF-miRNA-mRNA interaction network was constructed to analyze the relationships among these 18 DE-miRNAs and their targets and TFs, as well as display the hub miRNAs, TFs, and target genes. Considering the degrees from network analysis and the reported functions, this study focused on the BHLHE40-miR-378d-BHLHE40 regulation axis and confirmed that BHLHE40 was a target of miR-378d. This cross-talk among DE-miRNAs, mRNAs, and TFs might be an important feature in TB, and the findings merited further study and provided new insights into immune defense and evasion underlying host-pathogen interactions.

Funder

the National Key Research and Development Program of China

Natural Science Foundation of Hubei Province

China Agricultural Research System

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3