Detection and Characterization of Electrogenic Bacteria from Soils

Author:

Rumora Ana1,Hopkins Liliana1,Yim Kayla1,Baykus Melissa F.1,Martinez Luisa1,Jimenez Luis1

Affiliation:

1. Biology and Horticulture Department, Bergen Community College, 400 Paramus Road, Paramus, NJ 07652, USA

Abstract

Soil microbial fuel cells (SMFCs) are bioelectrical devices powered by the oxidation of organic and inorganic compounds due to microbial activity. Seven soils were randomly selected from Bergen Community College or areas nearby, located in the state of New Jersey, USA, were used to screen for the presence of electrogenic bacteria. SMFCs were incubated at 35–37 °C. Electricity generation and electrogenic bacteria were determined using an application developed for cellular phones. Of the seven samples, five generated electricity and enriched electrogenic bacteria. Average electrical output for the seven SMFCs was 155 microwatts with the start-up time ranging from 1 to 11 days. The highest output and electrogenic bacterial numbers were found with SMFC-B1 with 143 microwatts and 2.99 × 109 electrogenic bacteria after 15 days. Optimal electrical output and electrogenic bacterial numbers ranged from 1 to 21 days. Microbial DNA was extracted from the top and bottom of the anode of SMFC-B1 using the ZR Soil Microbe DNA MiniPrep Protocol followed by PCR amplification of 16S rRNA V3-V4 region. Next-generation sequencing of 16S rRNA genes generated an average of 58 k sequences. BLAST analysis of the anode bacterial community in SMFC-B1 demonstrated that the predominant bacterial phylum was Bacillota of the class Clostridia (50%). However, bacteria belonging to the phylum Pseudomonadota (15%) such as Magnetospirillum sp. and Methylocaldum gracile were also part of the predominant electrogenic bacterial community in the anode. Unidentified uncultured bacteria accounted for 35% of the predominant bacterial community. Bioelectrical devices such as MFCs provide sustainable and clean alternatives to future applications for electricity generation, waste treatment, and biosensors.

Publisher

MDPI AG

Subject

Applied Microbiology and Biotechnology,Biomedical Engineering,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3