State of Health Estimation for Lithium-Ion Batteries Based on Transferable Long Short-Term Memory Optimized Using Harris Hawk Algorithm

Author:

Yang Guangyi1ORCID,Wang Xianglin2,Li Ran1ORCID,Zhang Xiaoyu3

Affiliation:

1. Engineering Research Center of Automotive Electronics Drive Control and System Integration, Harbin University of Science and Technology, Ministry of Education, Harbin 150080, China

2. School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China

3. College of Artificial Intelligence, Nankai University, Tianjin 300110, China

Abstract

Accurately estimating the state of health (SOH) of lithium-ion batteries ensures the proper operation of the battery management system (BMS) and promotes the second-life utilization of retired batteries. The challenges of existing lithium-ion battery SOH prediction techniques primarily stem from the different battery aging mechanisms and limited model training data. We propose a novel transferable SOH prediction method based on a neural network optimized by Harris hawk optimization (HHO) to address this challenge. The battery charging data analysis involves selecting health features highly correlated with SOH. The Spearman correlation coefficient assesses the correlation between features and SOH. We first combined the long short-term memory (LSTM) and fully connected (FC) layers to form the base model (LSTM-FC) and then retrained the model using a fine-tuning strategy that freezes the LSTM hidden layers. Additionally, the HHO algorithm optimizes the number of epochs and units in the FC and LSTM hidden layers. The proposed method demonstrates estimation effectiveness using multiple aging data from the NASA, CALCE, and XJTU databases. The experimental results demonstrate that the proposed method can accurately estimate SOH with high precision using low amounts of sample data. The RMSE is less than 0.4%, and the MAE is less than 0.3%.

Funder

Natural Science Foundation of Heilongjiang Province

Harbin manufacturing science and technology innovation talent project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3