Sensor Fault Diagnosis Using a Machine Fuzzy Lyapunov-Based Computed Ratio Algorithm

Author:

TayebiHaghighi Shahnaz,Koo InsooORCID

Abstract

Anomaly identification for internal combustion engine (ICE) sensors has become an important research area in recent years. In this work, a proposed indirect fuzzy Lyapunov-based computed ratio observer integrated with a support vector machine (SVM) was designed for sensor fault classification. The proposed fuzzy Lyapunov-based computed ratio observer integrated with SVM has three main layers. In the preprocessing (first) layer, the resampled root mean square (RMS) signals are extracted from the original signals to the designed indirect observer. The second (observation) layer is the principal part with the proposed indirect fuzzy sensor-fault-classification technique. This layer has two sub-layers: signal modeling and estimation. The Gaussian autoregressive-Laguerre approach integrated with the fuzzy approach is designed for resampled RMS fuel-to-air-ratio normal signal modeling, while the subsequent sub-layer is used for resampled RMS fuel-to-air-ratio signal estimation using the proposed fuzzy Lyapunov-based computed ratio observer. The third layer, for residual signal generation and classification, is used to identify ICE sensor anomalies, where residual signals are generated by the difference between the original and estimated resampled RMS fuel-to-air-ratio signals. Moreover, SVM is suggested for residual signal classification. To test the effectiveness of the proposed method, the results are compared with two approaches: a Lyapunov-based computed ratio observer and a computed ratio observer. The results show that the accuracy of sensor anomaly classification by the proposed fuzzy Lyapunov-based computed ratio observer is 98.17%. Furthermore, the proposed scheme improves the accuracy of sensor fault classification by 8.37%, 2.17%, 6.17%, 4.57%, and 5.37% compared to other existing methods such as the computed ratio observer, the Lyapunov-based computed ratio observer, fuzzy feedback linearization observation, self-tuning fuzzy robust multi-integral observer, and Kalman filter technique, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3