Highly Bendable and Durable Waterproof Paper for Ultra-High Electromagnetic Interference Shielding

Author:

Ren Fang,Guo Han,Guo Zheng-Zheng,Jin Yan-Ling,Duan Hong-Ji,Ren Peng-GangORCID,Yan Ding-Xiang

Abstract

An efficient electromagnetic interference (EMI) shielding paper with excellent water repellency and mechanical flexibility has been developed, by assembling silver nanowires (AgNWs) and hydrophobic inorganic ceramic on the cellulose paper, via a facile dip-coating preparation. Scanning electron microscope (SEM) observations confirmed that AgNWs were interconnected and densely coated on both sides of the cellulose fiber, which endows the as-prepared paper with high conductivity (33.69 S/cm in-plane direction) at a low AgNW area density of 0.13 mg/cm2. Owing to multiple reflections and scattering between the two outer highly conductive surfaces, the obtained composite presented a high EMI shielding effectiveness (EMI SE) of up to 46 dB against the X band, and ultrahigh specific EMI SE of 271.2 dB mm–1. Moreover, the prepared hydrophobic AgNW/cellulose (H-AgNW/cellulose) composite paper could also maintain high EMI SE and extraordinary waterproofness (water contact angle > 140°) by suffering dozens of bending tests or one thousand peeling tests. Overall, such a multifunctional paper might have practical applications in packaging conductive components and can be used as EMI shielding elements in advanced application areas, even under harsh conditions.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3