Author:
Yao Chang-Jiang,Zhang Hao-Li,Zhang Qichun
Abstract
Organic thermoelectric (TE) materials can directly convert heat to electricity, and they are emerging as new materials for energy harvesting and cooling technologies. The performance of TE materials mainly depends on the properties of materials, including the Seebeck coefficient, electrical conductivity, thermal conductivity, and thermal stability. Traditional TE materials are mostly based on low-bandgap inorganic compounds, such as bismuth chalcogenide, lead telluride, and tin selenide, while organic materials as promising TE materials are attracting more and more attention because of their intrinsic advantages, including cost-effectiveness, easy processing, low density, low thermal conductivity, and high flexibility. However, to meet the requirements of practical applications, the performance of organic TE materials needs much improvement. A variety of efforts have been made to enhance the performance of organic TE materials, including the modification of molecular structure, and chemical or electrochemical doping. In this review, we summarize recent progress in organic TE materials, and discuss the feasible strategies for enhancing the properties of organic TE materials for future energy-harvesting applications.
Subject
Polymers and Plastics,General Chemistry
Cited by
194 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献