Abstract
Vulcanization and reinforcement are critical factors in governing the ultimate practical applications of elastomer composites. Here we achieved a simultaneous improvement of curing and mechanical properties of elastomer composites by the incorporation of a functionalized halloysite nanotubes–silica hybrid (HS-s-M). Typically, HS-s-M was synthesized by 2-mercapto benzothiazole (M) immobilized on the surface of halloysite nanotubes–silica hybrid (HS). It was found that the HS-s-M uniformly dispersed in the styrene-butadiene rubber (SBR) matrix, offering more opportunity for M molecules to communicate with rubber. In addition, the physical loss of accelerator M from migration and volatilization was efficiently suspended. Therefore, SBR/HS-s-M composites showed a lower curing activation energy and a higher crosslinking density than SBR/HS composites. Moreover, a stronger interfacial interaction between HS-s-M and SBR was formed by the cross-linking reaction, giving a positive contribution to the eventual mechanical properties. The possible vulcanization and reinforcement mechanisms of SBR/HS-s-M composites were also analyzed in detail.
Subject
Polymers and Plastics,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献