Abstract
The influence of plant fillers on the flammability and smoke emission of natural composites was investigated. Epoxy composites with 15, 25, and 35 wt % of walnut and hazelnut shell, as well as sunflower husk, were prepared and examined. The ground organic components were characterized by grain size distribution, thermogravimetric analysis (TGA) and microstructure observations (SEM). The composite materials were subjected to dynamic mechanical analysis (DMA) and structural evaluation with scanning electron microscopy. Cone calorimeter tests and TGA determined the influence of plant waste filler addition on thermal stability and flammability. Moreover, the semi-volatile and volatile compounds that evolved during the thermal decomposition of selected samples were identified using a steady state tube furnace and a gas chromatograph with a mass spectrometer. The intensity of the degradation reduced as a function of increasing filler content, while the yield of residue corresponded to the amount of lignin that is contained in the tested plants. Moreover, the incorporation of agricultural waste materials resulted in the formation of a char layer, which inhibits the burning process. The yield of char depended on the amount and type of the filler. The composites containing ground hazelnut shell formed swollen char that was shaped in multicellular layers, similar to intumescent fire retardants.
Subject
Polymers and Plastics,General Chemistry
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献