Biochar with Inorganic Nitrogen Fertilizer Reduces Direct Greenhouse Gas Emission Flux from Soil

Author:

Ayaz Muhammad1ORCID,Feizienė Dalia1,Tilvikienė Vita1ORCID,Feiza Virginijus1,Baltrėnaitė-Gedienė Edita2,Ullah Sana1

Affiliation:

1. Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, LT-58344 Kėdainiai, Lithuania

2. Institute of Environmental Protection, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania

Abstract

Agricultural waste can have a catastrophic impact on climate change, as it contributes significantly to greenhouse gas (GHG) emissions if not managed sustainably. Swine-digestate-manure-derived biochar may be one sustainable way to manage waste and tackle GHG emissions in temperate climatic conditions. The purpose of this study was to ascertain how such biochar could be used to reduce soil GHG emissions. Spring barley (Hordeum vulgare L.) and pea crops in 2020 and 2021, respectively, were treated with 25 t ha−1 of swine-digestate-manure-derived biochar (B1) and 120 kg ha−1 (N1) and 160 kg ha−1 (N2) of synthetic nitrogen fertilizer (ammonium nitrate). Biochar with or without nitrogen fertilizer substantially lowered GHG emissions compared to the control treatment (without any treatment) or treatments without biochar application. Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) emissions were directly measured using static chamber technology. Cumulative emissions and global warming potential (GWP) followed the same trend and were significantly lowered in biochar-treated soils. The influences of soil and environmental parameters on GHG emissions were, therefore, investigated. A positive correlation was found between both moisture and temperature and GHG emissions. Thus, biochar made from swine digestate manure may be an effective organic amendment to reduce GHG emissions and address climate change challenges.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3