Plant-Produced Nanoparticles Based on Artificial Self-Assembling Peptide Bearing the Influenza M2e Epitope

Author:

Blokhina Elena A.1,Mardanova Eugenia S.1ORCID,Zykova Anna A.1ORCID,Stepanova Liudmila A.2ORCID,Shuklina Marina A.2,Tsybalova Liudmila M.2ORCID,Ravin Nikolai V.1ORCID

Affiliation:

1. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia

2. Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 197376 St. Petersburg, Russia

Abstract

Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier. Here, we report the transient expression of a recombinant protein comprising four tandem copies of M2e fused to an artificial self-assembling peptide (SAP) in plants. The hybrid protein was efficiently expressed in Nicotiana benthamiana using the self-replicating potato virus X-based vector pEff. The protein was purified using metal affinity chromatography under denaturing conditions. The hybrid protein was capable of self-assembly in vitro into spherical particles 15–30 nm in size. The subcutaneous immunization of mice with M2e-carrying nanoparticles induced high levels of M2e-specific IgG antibodies in serum and mucosal secretions. Immunization provided mice with protection against a lethal influenza A virus challenge. SAP-based nanoparticles displaying M2e peptides can be further used to develop a recombinant “universal” vaccine against influenza A produced in plants.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3