Harnessing the Bioactive Potential of Limonium spathulatum (Desf.) Kuntze: Insights into Enzyme Inhibition and Phytochemical Profile

Author:

Youssef Seria1,Custódio Luisa2ORCID,Rodrigues Maria João2ORCID,Pereira Catarina G.2ORCID,Calhelha Ricardo C.3ORCID,Jekő József4,Cziáky Zoltán4ORCID,Ben Hamed Karim1

Affiliation:

1. Laboratory of Extremophile Plants, Center of Biotechnology of BorjCedria, Hammam-Lif 2050, Tunisia

2. Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

3. Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

4. Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4405 Nyíregyháza, Hungary

Abstract

This study assessed the halophyte species Limonium spathulatum (Desf.) as a possible source of natural ingredients with the capacity to inhibit enzymes related to relevant human health disorders and food browning. Extracts using food-grade solvents such as water and ethanol were prepared by maceration from dried L. spathulatum leaves. They were evaluated for in vitro inhibition activity of enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), α-glucosidase, tyrosinase and lipase, related to Alzheimer’s disease, type-2-diabetes mellitus, skin hyperpigmentation, and obesity, respectively. These extracts were also appraised for in vitro acute toxicity on tumoral and non-tumoral cell lines and their chemical composition by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were more effective towards BChE than AChE. The best results were obtained with the hydroethanolic and water extracts, with IC50 values of 0.03 mg/mL and 0.06 mg/mL, respectively. The hydroethanolic extract had the highest capacity to inhibit α-glucosidase (IC50: 0.04 mg/mL), higher than the positive control used (acarbose, IC50 = 3.14 mg/mL). The ethanol extract displayed the best inhibitory activity against tyrosinase (IC50 = 0.34 mg/mL). The tested samples did not inhibit lipase and exhibited low to moderate cytotoxic activity against the tested cell lines. The hydroethanolic extract had a higher diversity of compounds, followed by the ethanol and water samples. Similar molecules were identified in all the extracts and were mainly hydroxybenzoic acids, hydroxycinnamic acids, and flavonoids. Taken together, these results suggest that L. spathulatum should be further explored as a source of bioactive ingredients for the food, cosmetic, and pharmaceutical industries.

Funder

Foundation for Science and Technology

FCT in Portugal and the Ministry of High Education and Scientific Research in Tunisia

FCT Scientific Employment Stimulus

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3