Plant-Associated Bacillus thuringiensis and Bacillus cereus: Inside Agents for Biocontrol and Genetic Recombination in Phytomicrobiome

Author:

Sorokan Antonina1,Gabdrakhmanova Venera1,Kuramshina Zilya2,Khairullin Ramil1,Maksimov Igor1

Affiliation:

1. Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia

2. Sterlitamak Branch of Federal State Budgetary Educational Institution of Higher Education “Ufa University of Science and Technology”, 49 Lenin Avenue, 453103 Sterlitamak, Russia

Abstract

Bacillus thuringiensis Berliner (Bt) and B. cereus sensu stricto Frankland and Frankland are closely related species of aerobic, spore-forming bacteria included in the B. cereus sensu lato group. This group is one of the most studied, but it remains also the most mysterious species of bacteria. Despite more than a century of research on the features of these ubiquitous bacteria, there are a lot of questionable issues related to their taxonomy, resistance to external influences, endophytic existence, their place in multidimensional relationships in the ecosystem, and many others. The review summarizes current data on the mutualistic relationships of Bt and B. cereus bacteria with plants, the structure of the phytomicrobiomes including Bt and B. cereus, and the abilities of plant-associated and endophytic strains to improve plant resistance to various environmental factors and its productivity. Key findings on the possibility of the use of Cry gene promoter for transcription of the target dsRNA and simultaneous release of pore-forming proteins and provocation of RNA-interference in pest organisms allow us to consider this group of microorganisms as unique tools of genetic engineering and biological control. This will open the prospects for the development and direct change of plant microbiomes, and possibly serve as the basis for the regulation of the entire agroecosystem.

Funder

The Russian Federation State program

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3