Nitric Oxide, a Key Modulator in the Alleviation of Environmental Stress-Mediated Damage in Crop Plants: A Meta-Analysis

Author:

Khan Murtaza1ORCID,Al Azzawi Tiba Nazar Ibrahim2,Ali Sajid1,Yun Byung-Wook2ORCID,Mun Bong-Gyu2

Affiliation:

1. Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea

2. Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Nitric oxide (NO) is a small, diatomic, gaseous, free radicle, lipophilic, diffusible, and highly reactive molecule with unique properties that make it a crucial signaling molecule with important physiological, biochemical, and molecular implications for plants under normal and stressful conditions. NO regulates plant growth and developmental processes, such as seed germination, root growth, shoot development, and flowering. It is also a signaling molecule in various plant growth processes, such as cell elongation, differentiation, and proliferation. NO also regulates the expression of genes encoding hormones and signaling molecules associated with plant development. Abiotic stresses induce NO production in plants, which can regulate various biological processes, such as stomatal closure, antioxidant defense, ion homeostasis, and the induction of stress-responsive genes. Moreover, NO can activate plant defense response mechanisms, such as the production of pathogenesis-related proteins, phytohormones, and metabolites against biotic and oxidative stressors. NO can also directly inhibit pathogen growth by damaging their DNA and proteins. Overall, NO exhibits diverse regulatory roles in plant growth, development, and defense responses through complex molecular mechanisms that still require further studies. Understanding NO’s role in plant biology is essential for developing strategies for improved plant growth and stress tolerance in agriculture and environmental management.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3