Sensitive Quantitative In Vivo Assay for Evaluating the Effects of Biomolecules on Hair Growth and Coloring Using Direct Microinjections into Mouse Whisker Follicles

Author:

Gao Lipeng1,Zhang He-Li1,Tan Xiao-Yang1,Wang Yan-Ge2,Song Hongzhi123,Yuan Vicky Lan1,Liao Xin-Hua1ORCID

Affiliation:

1. School of Life Sciences, Shanghai University, Shanghai 200444, China

2. School of Medicine, Shanghai University, Shanghai 200444, China

3. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

Abstract

Many people suffer from hair loss and abnormal skin pigmentation, highlighting the need for simple assays to support drug discovery research. Current assays have various limitations, such as being in vitro only, not sensitive enough, or unquantifiable. We took advantage of the bilateral symmetry and large size of mouse whisker follicles to develop a novel in vivo assay called “whisker follicle microinjection assay”. In this assay, we plucked mouse whiskers and then injected molecules directly into one side of the whisker follicles using microneedles that were a similar size to the whiskers, and we injected solvent on the other side as a control. Once the whiskers grew out again, we quantitatively measured their length and color intensity to evaluate the effects of the molecules on hair growth and coloring. Several chemicals and proteins were used to test this assay. The chemicals minoxidil and ruxolitinib, as well as the protein RSPO1, promoted hair growth. The effect of the clinical drug minoxidil could be detected at a concentration as low as 0.001%. The chemical deoxyarbutin inhibited melanin production. The protein Nbl1 was identified as a novel hair-growth inhibitor. In conclusion, we successfully established a sensitive and quantitative in vivo assay to evaluate the effects of chemicals and proteins on hair growth and coloring and identified a novel regulator by using this assay. This whisker follicle microinjection assay will be useful when investigating protein functions and when developing drugs to treat hair loss and abnormal skin pigmentation.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Shanghai Engineering Research Center of Hair Medicine

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3