Relationship between Microstructure Evolution and Tensile Properties of AlSi10Mg Alloys with Varying Mg Content and Solidification Cooling Rates

Author:

Gandolfi Maressa,Xavier Marcella Gautê Cavalcante,Gomes Leonardo Fernandes,Reyes Rodrigo André Valenzuela,Garcia Amauri,Spinelli José EduardoORCID

Abstract

This work explored and contrasted the effect of microstructure on the tensile properties of AlSi10Mg alloys generated by transient directional solidification depending on variations in cooling rate and magnesium (Mg) content (i.e., 0.45 and 1 wt.% Mg), with a focus on understanding the dendritic growth and phases constitution. Optical and scanning electron (SEM) microscopies, CALPHAD, and thermal analysis were used to describe the microstructure, forming phases, and resulting tensile properties. The findings showed that the experimental evolution of the primary dendritic spacing is very similar when both directionally solidified (DS) Al-10 wt.% Si-0.45 wt.% Mg and Al-10 wt.% Si-1 wt.% Mg alloys samples are compared. The secondary dendritic spacing was lower for the alloy with more Mg, especially considering the range of high growth velocities. Moreover, a greater fraction of (Al + Si + Mg2Si) ternary eutectic islands surrounding the α-Al dendritic matrix was noted for the alloy with 1 wt.% Mg. As a result of primary dendritic spacings greater than 180 μm related to lower cooling rates, slightly higher tensile properties were attained for the Al-10 wt.% Si-0.45 wt.% Mg alloy. In contrast, combining dendritic refining (<150 μm) and a larger Mg2Si fraction, fast-solidified DS Al-10 wt.% Si-1 wt.% Mg samples exhibited higher tensile strength and elongation. The control of cooling rate and fineness of the dendritic array provided a new insight related to the addition of Mg in slightly higher levels than conventional ones, capable of achieving a better balance of tensile properties in AlSi10Mg alloys.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3